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Abstract

In this paper, we show that for a wide class of operatorsT—including infinite order differential
operators, and multiplication and composition operators—acting on the spaceH(D) of holomorphic
functions in the unit diskD, we have most functionsf ∈ H(D) which enjoy the property thatTf
has maximal radial cluster set at any boundary point.
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1. Introduction and notation

Throughout this paperZ will stand for the set of all integers,N is the set of positive
integers,N0 := N ∪ {0}, C is the complex plane and̂C is its one-point compactification
C ∪ {∞}. As usual,B(a, r) will denote the euclidean open ball centered at the pointa ∈ C

� This work is supported in part by the Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 and
by MCyT Grant BFM2003-03893-C02-01.

∗ Corresponding author.
E-mail addresses:lbernal@us.es(L. Bernal-González),mccm@us.es(M.C. Calderón-Moreno),

joseantonio.prado@uam.es(J.A. Prado-Bassas).

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.04.002

http://www.elsevier.com/locate/jat
mailto:lbernal@us.es
mailto:mccm@us.es
mailto:joseantonio.prado@uam.es


L. Bernal-González et al. / Journal of Approximation Theory 135 (2005) 114–124 115

with radiusr > 0, andD = B(0, 1) is the unit open disk andT the unit circle. IfA ⊂ C

thenA represents its closure inC. IfG is a domain (:=connected, nonempty open subset of
C) then�G (�∞G, resp.) will stand for its boundary inC (in Ĉ, resp.), whileH(G) denotes
the Fréchet space of holomorphic functions onG, endowed with the topology of the local
uniform convergence inG. In particularH(G) is a Baire space. LetK(G) be the family
of all compact subsets ofG,K1(G) be the family of compact subsetsK of G such that no
connected component ofG \ K is relatively compact inG, andK2(G) be the family of
compact subsetsK ofGsuch thatC\K is connected. It holds thatK2(G) ⊂ K1(G) ⊂ K(G)

and that eachK ∈ K(G) is contained in someL ∈ K1(G) (see[9]). A Jordan domain is a
domainG in C such that�∞G is a topological image ofT. Finally, ifG is a Jordan domain
in C and� ∈ �∞G then a curve inG ending at� is a continuous mapping� : [0, 1) → G

such that limu→1− �(u) = �; we will denotẽ� := �([0, 1)).
The essential background on cluster sets can be found in [8,15]. Let us recall some

notions. LetG be a domain ofC, F : G → C be a function andA be a subset ofGwith an
accumulation point on�G. Thecluster set of F along Ais the set

CA(F) = {w ∈ Ĉ : there exists a sequence(zn)n�1 ⊂ A tending to
some point of�G such that limn→∞ F(zn) = w}.

Moreover, ift0 ∈ �G andt0 is an accumulation point ofA, then thecluster set of F along
A at t0 is the set

CA(F, t0) = {w ∈ Ĉ : there exists a sequence(zn)n�1 ⊂ A tending tot0
such that limn→∞ F(zn) = w}.

It is clear that bothCA(F) andCA(F, t0) are closed subsets of̂C and thatCA(F) is the
Ĉ-closure of

⋃
t0∈�G CA(F, t0). IfA = G then the subscript “A” and the expression “along

A” are usually omitted. A special important case occurs whenG = D, t0 ∈ T andA is
the radiusA := {ut0 : u ∈ [0, 1)}; then we can define theradial cluster setas the set
C�(F, t0) := CA(F) = CA(F, t0).

It is an interesting problem to get a holomorphic function withmaximalcluster sets,
that is, equal tôC. Given a domainG, a sequence(an)n�1 ⊂ G without limit points in
G and (wn)n�1 a sequence inC, then an interpolation theorem due to Weierstrass (see
[16, Theorem 15.13]) provides a functionf ∈ H(G) such thatf (an) = wn (n ∈ N).
By choosing(wn)n�1 as an enumeration of the setQ[i] := Q + iQ of rational complex
numbers, a functionf ∈ H(G)withmaximal cluster set along(an)n�1 is obtained. Several
authors have shown (see for instance [12,14,2]) that there is a residual set (:=a set with
complement of first Baire category) of functionsf ∈ H(G) such that for eachj ∈ Z,
C(f (j), t) = Ĉ for all t ∈ �G (f (j) is the derivative of orderj of f if j �0; if G is
simply connected andj < 0, thenf (−j) denotes any fixed antiderivative of order−j of
f in G), while in [3] the first author proves that for each non-relatively compact subsetA
of G the set{f ∈ H(G) : CA(f

(j)) = Ĉ for all j�0} is also residual. In particular, if
G = D andt0 ∈ T is fixed, then we obtain the existence of a residual set of functions with
maximal radial cluster set at one prescribed pointt0 ∈ �G. By using Baire’s theorem, a
residual set of functionsf ∈ H(D) can be also obtained such thatC�(f

(j), t) = Ĉ for all
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j�0 and allt belonging to a prescribed densecountablesubset ofT, while Tenthoff[18]
provides adensesubsetM of H(D) such thatC�(f

(j), t) = Ĉ for all j�0, all f ∈ M

and allt ∈ T. This result can also be obtained as a consequence of [7, Theorem 5] if one
takes into account that the polynomials are dense inH(D). Finally, in [6], it is shown, as a
special instance of [6, Theorem 2.1], that there is adense linear manifoldof functions with
maximal radial cluster sets at any point ofT. In addition, it is observed in [6, Section 3]
that, as a consequence of Collingwood’s maximality theorem, there is aresidualsubset of
functionsf ∈ H(D) such thatC�(f, t0) is maximal for allt0 belonging to some residual
subset ofT depending on f. In view of these results, the next question arises:

Does a residual setM ⊂ H(D) exist such thatC�(f, t) = Ĉ for all functionsf ∈ M

and all boundary pointst ∈ T?

In this paper, we are concerned with looking for operatorsT acting onH(D) for which
there exists a residual set of functions whose images underT have maximal radial cluster
sets at any boundary pointt ∈ T. Examples of such operators—including infinite order
differential operators, multiplication operators and composition operators—are furnished.
The identity operatorT = Idwill be one of the operators having the mentioned maximality
property, so we have a comprehensive answer to the above question.

2. Operators generating maximal radial cluster sets

In this section, we are going to state our main result about maximality of radial cluster
sets. However, a more general situation can be studied by replacing each functionf ∈
H(D) by the actionTf of an operatorT : H(D) → H(D) on f. But before this we
need some preliminary definitions, both of which were similarly stated in[5], see also
[4]. By an operator onH(G) we mean a continuous (not necessarily linear) selfmapping
T : H(G) → H(G), whereG is a domain ofC.

Definition 2.1. LetG ⊂ C be a domain andT : H(G) → H(G) an operator. We say that
T is locally stable near the boundaryif for eachK ∈ K(G) there exists a compact subset
M ∈ K(G) such that for each compact subsetL ∈ K2(G) with L ⊂ G \ M, each function
f ∈ H(G) and each positive numberε > 0, there exist a compact subsetL′ ∈ K2(G) with
L′ ⊂ G \ K and a positive number� > 0 such that

[g ∈ H(G) and‖f − g‖L′ < �] implies‖Tf − T g‖L < ε.

Definition 2.2. LetG ⊂ C be a domain,T : H(G) → H(G) an operator andA ⊂ H(G).
We say thatThaslocally dense range atA near the boundaryif there exists a compact subset
S ∈ K(G), such that for eachf ∈ A, each compact subsetL ∈ K2(G) with L ⊂ G \ S

and each positive numberε > 0, there is a functionF ∈ H(G) such that‖T F − f ‖L < ε.

Of course, if the setA is contained in the range of an operatorT onH(G), thenT has
dense range atA. In particular, ifT has dense range (that is, atA = H(G)) thenT has
locally dense range atH(G). Examples of these situations will be found later. We are now
ready to state an instrumental, abstract result (Theorem 2.1) that might be of independent
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interest. From it, our main result (Theorem 2.2) will be derived. For the sake of simplicity,
we delete the sentence “near the boundary” in the notions defined in the last two definitions.

Theorem 2.1. LetG ⊂ C be a domain and{A�}�∈I and{B�}�∈J be two families of subsets
of G satisfying the following properties:

(a) For every� ∈ I , the setA� is relatively compact in G.
(b) For everyK ∈ K(G) there exist� ∈ I andL ∈ K2(G) such thatA� ⊂ L ⊂ G \ K.
(c) For all � ∈ I and all� ∈ J , A� ∩ B� �= Ø.

LetT : H(G) → H(G) be a continuous operator satisfying the next two properties:

(P) T is locally stable.
(Q) T has locally dense range at the constant functions.

Then the setM := {f ∈ H(G) : Tf (B�) = C for all � ∈ J } is residual inH(G).

Proof. Let (qk)k be an enumeration ofQ[i] such that each number inQ[i] occurs infinitely
many times in the sequence. SinceQ[i] is dense inC, the family{Vk : k ∈ N} is an open
basis for the topology ofC, whereVk := B(qk, 1/k). Due to (c), we can select a point
z�� ∈ A� ∩ B� for every pair(�,�) ∈ I × J . Then, trivially,C� := {z�� : � ∈ J } ⊂ A�
(� ∈ I ) and{z�� : � ∈ I } ⊂ B� (� ∈ J ). Let us denote by�a the point evaluation functional

�a : f ∈ H(G) �→ f (a) ∈ C,

which is linear and continuous.
From the definition ofM, we observe thatM ⊃ M1, where

M1 :=
⋂
k∈N

Sk

and

Sk :=
⋃
�∈I

⋂
�∈J

(�z�� ◦ T )−1(Vk) (k ∈ N).

The point is the trivial inclusion
⋂
�∈J

⋃
�∈I

D�� ⊃ ⋃
�∈I

⋂
�∈J

D��, which is true for any family

{D�� : � ∈ I, � ∈ J } of sets.
Firstly, we will prove that everySk is an open subset ofH(G). For this, it is enough

to show that for a fixed� ∈ I , the intersection
⋂
�∈J

(�z�� ◦ T )−1(V ) is an open subset of

H(G) for each open subsetV ⊂ C. This, in turn, is fulfilled as soon as one proves the
equicontinuity of the family{�z ◦ T : z ∈ C�}(= {�z�� ◦ T : � ∈ J }) (see[17]). Indeed,
givenε > 0 then, evidently,|(�z ◦ T )(f )| = |Tf (z)| < ε for all z ∈ C� and all functions
f belonging to the 0-neighbourhoodU := {f ∈ H(G) : ‖Tf ‖C�

< ε}; note thatU is
certainly a 0-neighbourhood becauseT is continuous and, by (a), the setA� (soC�) is
relatively compact inG; this shows the equicontinuity of{�z : z ∈ C�}. Thus, theSk ’s
(k ∈ N) are open andM1 is aG�-subset.
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Consequently, sinceH(G) is a Baire space, it suffices to demonstrate that every fixed
Sk is dense inH(G). Fix a positive number� > 0, a functiong ∈ H(G) and a compact
subsetK ∈ K1(G). Because the family{D(g,K, �) : g ∈ H(G), K ∈ K1(G) and� > 0}
(whereD(g,K, �) := {h ∈ H(G) : ‖h − g‖K < �}) is an open basis for the topology of
H(G), our goal is to see that

Sk ∩ D(g,K, �) �= Ø (1)

Then, fixk ∈ N, g ∈ H(G), K ∈ K1(G) and� > 0, and letM be the compact subset
of G given by the local stability ofT when applied on the compact setK. Due to (b) and
the fact thatC� ⊂ A� (� ∈ I ) we can find an element� ∈ I and a compact setL ∈ K2(G)

for whichC� ⊂ L ⊂ G \ (M ∪ S), whereS ∈ K(G) is the compact set given by (Q). On
the other hand, sinceL ⊂ G \ S, we can find for eachk ∈ N a functionFk ∈ H(G) such
that

‖T Fk − qk‖L < 1/2k. (2)

SinceL ⊂ G \ M, there exist from (P) a compact setL′ ∈ K2(G) with L′ ⊂ G \ K and a
positive number�k > 0 such that

[h ∈ H(G) and‖Fk − h‖L′ < �k] implies‖T Fk − T h‖L < 1/2k. (3)

Byconstruction,L′∩K = Ø,sowemaychooseopensubsetsO1,O2 ofGwithO1∩O2 =
Ø,K ⊂ O1 andL′ ⊂ O2. Consider the setsE := L′ ∪ K ∈ K1(G) (this fact is crucial,
and it is true becauseK ∈ K1(G) andL′ ∈ K2(G)) andO := O1 ∪ O2, and the function
F : O → C defined as

F(z) :=
{

g(z) if z ∈ O1,

Fk(z) if z ∈ O2.

It is clear thatF ∈ H(O) and thatE ⊂ O. Consequently, Runge’s approximation theorem
[16, Chapter 13] guarantees the existence of a rational functionh(z) with poles outsideG
(soh ∈ H(G)) such that‖F −h‖E < min{�, �k}. In particular, we obtain‖g−h‖K �‖F −
h‖E < �, so h∈ D(g,K, �).
On the other hand,‖Fk−h‖L′ �‖F −h‖E < �k; whence, by (3), we get‖T Fk−T h‖L <

1/2k, and by (2) and the triangle inequality one obtains‖T h−qk‖L < 1/k. But this implies
|T h(z��) − qk| < 1/k for all � ∈ J becauseC� ⊂ L. Thereforeh ∈ ⋂

�∈J
(�z�� ◦ T )−1(Vk),

soh ∈ Sk. Consequently,h ∈ D(g,K, ε) ∩ Sk and (1) is satisfied. �

As a consequence of this theorem, we get our desired result about radial cluster sets via
operators. Of course, the identity operatorId satisfies (P) and (Q), so the next statement
applies toId, so solving the original problem proposed in the Introduction.

Theorem 2.2. Let T be a continuous operator onH(D) satisfying properties(P)and(Q)of
Theorem2.1.Then there exists a residual set of functionsf ∈ H(D) such thatC�(Tf, t) =
Ĉ for all t ∈ T.
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Proof. Firstly, we define

ant :=
{ (

1− 1
2n

)
t if �(t)�0,(

1− 1
2n+1

)
t if �(t) < 0,

where�(z) denotes the imaginary part of everyz ∈ C.
Choose nowI := N, J := T,G := D, An := {ant : t ∈ T} (n ∈ N) andBt := {ant :

n ∈ N} (t ∈ T). Then it is easy to see that the families{An}n∈N and{Bt }t∈T satisfy the
hypothesis of Theorem2.1. Hence the set

M := {f ∈ H(D) : {Tf (an,t ) : n ∈ N} = C for all t ∈ T}
is residual inH(D). Sinceanj t → t (j → ∞) for all t ∈ T and all subsequences
(nj )j �1 ⊂ N, the residuality ofM implies the residuality of the greater set{f ∈ H(D) :
C�(Tf, t) = Ĉ for all t ∈ T}. �

In view of this result, from now on we will use the next definition.

Definition 2.3. Let T be a continuous operator onH(D). We say thatT has themaximal
radial cluster set property(MRCS-property) if the set

M�(T ) := {f ∈ H(D) : C�(Tf, t) = Ĉ for all t ∈ T}
is residual inH(D).

In terms of this new notation, we have shown that an operator onH(D) satisfying
conditions (P) and (Q) has the MRCS-property.

Remark 2.3. In Theorem 2.2 we can replace radii by the family of all rotations{ei�� : � ∈
[0, 2	]} of any fixed curve� in D ending at 1 and we still have the same chaotic boundary
behavior under the action of an operatorTsatisfying (P) and (Q). In fact, Theorem2.1 allows
us to derive a version of Theorem 2.2 for Jordan domains. Namely, if� is a Jordan domain
then there exists a family of curves{��}�∈�∞�—with �� ending at� for each� ∈ �∞�—
with the property that ifT is a continuous operator onH(�) satisfying (P) and (Q), then
there exists a residual set of functionsf ∈ H(�) such thatC�̃�

(Tf ) = Ĉ for all � ∈ �∞�.
Indeed, the Osgood–Caratheodory theorem (see[13]) provides a homeomorphism
 from
D onto theĈ-closure of� whose restriction onD is a holomorphic isomorphism from
D onto �. Then define�� for each� ∈ �∞� as ��(u) = 
(
−1(�)u) (0�u < 1).
The conclusion follows by applying Theorem 2.1 toI := N, J := T, G := �, An :=

({ant }t∈T) (n ∈ N) andBt := 
({ant }n∈N) (t ∈ T), in a similar way as in the proof of
Theorem 2.2.

Let us give a first example of operators under whose action this behavior is induced.
If �(z) = ∑

k�0�kz
k is an entire function of subexponential type, that is, for all num-

bersε > 0 there is a constantA = A(ε) > 0 such that|�(z)|�Aeε|z|, or equivalently,
limk→∞(k!|�k|)1/k = 0, then�(D) := ∑

k�0�kD
k defines a linear continuous operator
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onH(D) (actually onH(G) with G any domain inC) called an infinite order differential
operator, whereD denotes the differential operator andD0 := the identity operator. Using
Cauchy’s estimates, it is easy to check that if� �≡ 0 then�(D) is locally stable (in fact,
we can takeM = K in Definition2.1 andL′ may be a compact set slightly greater thanL)
and obviously its range contains the constant functions. Hence with the help of Theorem
2.2 we get the following result.

Theorem 2.4. Every non-zero infinite order differential operator�(D) onH(D) induced
by an entire function� of subexponential type has the MRCS-property.

In particular, if for eachj�0we take�(z) := zj thenwe get that the differential operator
of orderj > 0 (the identity operator ifj = 0) has this property and, since a countable
intersectionof residual sets is again residual,weobtain thenext corollary ,whichgeneralizes
the result of Tenthoff[18] stated in the first section.

Corollary 2.5. The set{f ∈ H(D) : C�(f
(j), t) = Ĉ for all j�0 and all t ∈ T} is

residual inH(D).

Remark 2.6. Due to Fatou’s theorem on radial limits (see[10]) we cannot expect to get
functions in the Hardy spaceHp with maximal radial cluster set at any boundary point.

Observe that the antiderivative operator of orderj ∈ N ata ∈ D, namelyD−j
a f := the

unique functiong ∈ H(D) such thatDjg = f andDkg(a) = 0 (0�k < j ), is not locally
stable, so we cannot apply Theorem 2.2. Hence, we propose the next problem:

Is the set{f ∈ H(D) : C�(f
(j), t) = Ĉ for all j ∈ Z and allt ∈ T} residual in

H(D)?

Of course, the problem may be formulated more generally by replacing the antiderivatives
by an integral operatorT given byTf (z) = ∫ z

a

(z, t)f (t) dt (f ∈ H(D), z ∈ D), where


 satisfies adequate conditions.

3. Further examples

It is interesting to construct operators with the MRCS-property from others which enjoy
this property. In the case of algebraic operations made on an operatorT with the MRCS-
property, we should “control” the boundary radial behavior of the “perturbing” operator.We
joint together in the next theorem themain three operations: sum, product and composition.
A nice result on large linear submanifolds is established in the last part of the assertion.

Theorem 3.1. (a) Let T , S : H(D) → H(D) be operators such that T has the MRCS-
property.We have:

(i) If for everyf ∈ H(D) and everyt ∈ T there exists lim
r→1−(Sf )(rt) ∈ C, thenT + S

has the MRCS-property.
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(ii) If for everyf ∈ H(D) and everyt ∈ T there exists lim
r→1−(Sf )(rt) ∈ C \ {0}, then

T · S has the MRCS-property.
(iii) If S is linear and onto thenT ◦ S has the MRCS-property.

(b) Every onto linear operator S has the MRCS-property.Moreover,there is a dense
linear submanifoldM ⊂ H(D) such thatM \ {0} ⊂ M�(S).

Proof. (a) Parts (i) and (ii) are very easy, so their proof is omitted. As for (iii), we need to
show thatM�(T ◦ S) is residual. For this, note thatM�(T ◦ S) = S−1(M�(T )). Since
M�(T ) is residual, there are countably many dense open subsetsWn ⊂ H(D) (n ∈ N)

with M�(T ) ⊃
∞⋂
n=1

Wn. From the continuity ofS it follows that each setS−1(Wn) is open.

We have thatM�(T ◦ S) ⊃
∞⋂
n=1

S−1(Wn), so it is enough to prove that each setS−1(Wn)

is dense. This is true because the image underSof an open subset is again an open subset,
which in turn follows from the open mapping theorem (see[17]) sinceS is linear and onto
andH(D) is anF-space.
(b) ThatShas the MRCS-property follows from (iii) just by takingT = Id. As a conse-

quence of [6, Theorem 2.1] (see Section 1), there is a dense linear manifoldM1 ⊂ H(D)

with M1 \ {0} ⊂ M�(Id). ThereforeM \ {0} ⊂ M�(S), whereM := S−1(M1), because
M�(S) = S−1(M�(Id)). SinceS is linear,M is a linear submanifold ofH(D). Finally,M
is dense becauseM1 is dense andS is an open mapping.�

We next consider the multiplication operator

M� : f ∈ H(D) �→ � · f ∈ H(D),

where� ∈ H(D). The setZ(�) of zeros of� plays an important role in determining
whetherM� has the MRCS-property.

Theorem 3.2. If � ∈ H(D) and Z(�) is finite then the operatorM� has the MRCS-
property.

Proof. Since� is continuous we have that it is bounded on any compact subset ofD,
from which one easily derives thatM� is locally stable. According to Theorem2.2, it is
suffices to show thatM� has locally dense range at the constants. In order to see this, let
us setS := Z(�)—which is finite, so compact—and take a constant� ∈ C together with a
compact setL ∈ K2(D) with L ⊂ D \ S, and a numberε > 0. By Runge’s theorem, there
is a polynomialF (soF ∈ H(D)) such that∣∣∣∣F(z) − �

�(z)

∣∣∣∣ < ε

max
L

|�| for all z ∈ L.

But this implies‖M�F − �‖L < ε, which tells us thatM� has locally dense range at the
constants. �
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Observe that ifZ(�) is not finite thenM� cannot have locally dense range at the constants
(takeL = {a}with a ∈ Z(�)\S, whereSis as inDefinition2.1). Therefore, it is not possible
to apply Theorem 2.2. But this does not imply thatM� does not have the MRCS-property,
as one can see from the next example.

Example 3.1. There is a function� ∈ H(D) with infinitely many zeros inD such that
there exists

L(�) := lim
r→1− �(rei�) ∈ �D for all � ∈ [0, 2	]. (4)

Then, trivially,M�(Id) = M�(M�), so M�(M�) is residual andM� has the MRCS-
property. According to Frostman[11] (see also [1, Theorem 1]), if� ∈ [0, 2	] and(ak)k�1
is a sequence of distinct points inD \ {0} such that

∞∑
k=1

1− |ak|
|ei� − ak| < ∞, (5)

then the corresponding Blaschke product

�(z) :=
∞∏
k=1

ak

ak

ak − z

1− akz
(z ∈ D),

which is inH(D) and has infinitely many zeros, has its radial limitL(�) ∈ �D. Therefore,
in order that (4) can be fulfilled, it is enough to find a sequenceak as before such that (5)
holds for all� ∈ [0, 2	]. For this, chooseak := 1

2(1+ ei/k
2
) (k ∈ N). This is a “good”

sequence if one takes into account that after a computation of two finite Taylor expansions

it is seen that limt→0
1−|12 (1−eit )|

t2/8
= 1 = lim t→0

|1−eit |
t

. The last approximation covers the

“worst” case� = 0. As for � �= 0, the elementary geometrical inequality|ei� − 1
2(1 +

ei/k
2
)| > | sin �

2 | for all k�k0(�) ∈ N (use that(1/2)(1 + ei/k
2
) tends to 1) solves the

problem.

Note that the zerosof� in the last example have tangential approximation to theboundary.
Hence, the following natural question arises:

Is there any function� with infinitely many zeros on a prescribed radius such thatM�
has the MRCS-property?

Now we deal with composition and superposition operators. Given
 ∈ H(D,D) :=
{g ∈ H(D) : g(D) ⊂ D} we define the (right) composition operatorC
 as

C
 : f ∈ H(D) �→ f ◦ 
 ∈ H(D).

Let us remember that an application� : X → X on a topological spaceX is said to be
properwhen the preimage of every compact is also compact. With this definition we can
state suitably our result about composition operators.
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Theorem 3.3. If 
 ∈ H(D) is proper,thenC
 has the MRCS-property.

Proof. The result follows immediately from Theorem2.2 because if
 is proper, then
it is easy to check thatC
 is locally stable, and it is obvious that all constants are in the range
of C
. �

In particular, the rotationoperatorR� : f (z) ∈ H(D) �→ f (ei�z) ∈ H(D)and in general
the composition operator generated by an automorphism ofD have the MRCS-property.

Finally, we consider the superposition (or left composition) operators. If
 is an entire
function, the superposition operatorL
 : H(D) → H(D) is defined as

L
(f ) = 
 ◦ f.

In this caseweonly have to suppose that
 is non-constant to get a complete characterization,
which ends this paper.

Theorem 3.4. Let
 be an entire function.Then the superposition operatorL
 generated
by
 has the MRCS-property if and only if
 is non-constant.

Proof. Using the little Picard theorem (see[16]) it is easy to check thatL
 has locally dense
range at the constants. Moreover,L
 is locally stable since it is continuous onH(D). Hence
by Theorem 2.2 the operatorL
 has the MRCS-property. On the other hand, it is trivial
that if 
 is constant then all cluster sets are constant, soL
 does not have the MRCS-
property. �

Note added in Proof

While this paper was in press, we realized that, after adequate reasonings, an affirmative
answer to the question posed in the Introduction can be derived from the results of Section 4
in the paper by S. Kierst and E. Szpilrajn [Sur certains singularités des fonctions analytiques
uniformes, Fund.Math. 21 (1933) 267–294]. Nevertheless, our findings in the present paper,
which include the introduction of a large class of operatorsT, surpass largely our first
objective, that was merely the caseT = Id.
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