Available online at www.sciencedirect.com
sanNCE@DlRECT@ JUURI‘{“-OF.
Approximation
Theory

ELSEVIER Journal of Approximation Theory 135 (2005) 114—124 —
www.elsevier.com/locate/jat

Simultaneously maximal radial cluster séts
L. Bernal-Gonzale% M.C. Calderén-Morerd*, J.A. Prado-Bass8s

3Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, Avenida Reina Mercedes, 41080
Sevilla, Spain
bDepartamento de Matematicas, Universidad Autonoma de Madrid, Ctra. Colmenar Viejo km. 15,28049
Madrid, Spain

Received 17 September 2004; received in revised form 9 February 2005; accepted 13 April 2005

Communicated by Manfred v Golitschek

Abstract

In this paper, we show that for a wide class of operafersincluding infinite order differential
operators, and multiplication and composition operators—acting on the gh@egof holomorphic
functions in the unit diskD, we have most functiong € H (D) which enjoy the property thal f
has maximal radial cluster set at any boundary point.
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1. Introduction and notation

Throughout this papeZ will stand for the set of all integersyl is the set of positive
integers,Np := N U {0}, C is the complex plane an@ is its one-point compactification
C U {o0}. As usual,B(a, r) will denote the euclidean open ball centered at the poiatC
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with radiusr > 0, andD = B(0, 1) is the unit open disk and the unit circle. IfA c C
thenA represents its closure @. If G is a domain (: =connected, nonempty open subset of
C) thendG (00 G, resp.) will stand for its boundaryﬂﬁ(m@ resp.), whileH (G) denotes
the Fréchet space of holomorphic functions@nendowed with the topology of the local
uniform convergence i®. In particularH (G) is a Baire space. Lé€(G) be the family
of all compact subsets @, K1(G) be the family of compact subsdtsof G such that no
connected component @f \ K is relatively compact irG, andK2(G) be the family of
compact subsetsof G such thaC\ K is connected. It holds th&tx (G) C K1(G) € K(G)
and that eaclk € K(G) is contained in somé € K1(G) (see[9]). A Jordan domain is a
domainG in C such that,, G is a topological image of . Finally, if G is a Jordan domain
in C and¢ € 05 G then a curve irG ending atf is a continuous mapping: [0,1) - G
such that lim_, 1- y(u) = &; we will denotey := ([0, 1)).

The essential background on cluster sets can be found in [8,15]. Let us recall some
notions. LetG be a domain o, F : G — C be a function and be a subset o& with an
accumulation point 0dG. Thecluster set of F along 4s the set

Ca(F)={we C : there exists asequencs,),>1 C A tending to
some point 00G such that lim_. F(z,) = w}.

Moreover, iftfg € 0G andig is an accumulation point @&, then thecluster set of F along
A at py is the set

Ca(F, 1) = {w e C : there exists asequencs,),>1 C A tending torg
such that lim_ o F(z,) = w}.

It is clear that bothC4 (F) andCa(F, 7o) are closed subsets &f and thatC 4 (F) is the
C-closure of J,,co6 Ca(F, 10). If A = G then the subscriptA” and the expression “along
A" are usually omitted. A special important case occurs wiieg D, 1o € T andAis
the radiusA := {utg : u € [0, 1)}; then we can define thadial cluster setas the set
Cy(F,10) := Ca(F) = Ca(F, 10).

It is an interesting problem to get a holomorphic function withximalcluster sets,
that is, equal tcC. Given a domairG, a sequencés,),>1 C G without limit points in
G and (w,),>1 a sequence i, then an interpolation theorem due to Weierstrass (see
[16, Theorem 15.13]) provides a functigh € H(G) such thatf(a,) = w, (n € N).
By choosing(w,), >1 as an enumeration of the g8fi] := Q + i Q of rational complex
numbers, a functiolf € H (G) with maximal cluster setalon@,,), > 1 is obtained. Several
authors have shown (see for instance [12,14,2]) that there is a residual sesétwith
complement of first Baire category) of functioifse H(G) such that for each € 7,
C(fD, 1) = Cforallr € 0G (£ is the derivative of ordej of f if j>0; if G is
simply connected angl < 0, then f(~/) denotes any fixed antiderivative of orderj of
fin G), while in [3] the first author proves that for each non-relatively compact sébset
of Gthe set{f € H(G) : Ca(f¥) = C forall j >0} is also residual. In particular, if
G = D andrg € T is fixed, then we obtain the existence of a residual set of functions with
maximal radial cluster set at one prescribed pajn&é 0G. By using Baire's theorem, a
residual set of functiong € H (D) can be also obtained such tr@g(f(/) t) = C for all
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Jj =0 and allt belonging to a prescribed denseuntablesubset ofl, while Tenthoff[18]
provides adensesubsetM of H(D) such thatCy(f,1) = Cforall j>0,all f € M

and allz € T. This result can also be obtained as a consequence of [7, Theorem 5] if one
takes into account that the polynomials are dendé (). Finally, in [6], it is shown, as a
special instance of [6, Theorem 2.1], that theredgase linear manifoldf functions with
maximal radial cluster sets at any point Bf In addition, it is observed in [6, Section 3]
that, as a consequence of Collingwood’s maximality theorem, thereeEdualsubset of
functions f € H (D) such thaiC,(f, o) is maximal for allzp belonging to some residual
subset ofl depending on f. In view of these results, the next question arises:

Does a residual séf C H(ID) exist such thaC,(f, 1) = C for all functionsf e M
and all boundary pointse T?

In this paper, we are concerned with looking for operafoasting onH (D) for which
there exists a residual set of functions whose images untarve maximal radial cluster
sets at any boundary pointe T. Examples of such operators—including infinite order
differential operators, multiplication operators and composition operators—are furnished.
The identity operator = Id will be one of the operators having the mentioned maximality
property, so we have a comprehensive answer to the above question.

2. Operators generating maximal radial cluster sets

In this section, we are going to state our main result about maximality of radial cluster
sets. However, a more general situation can be studied by replacing each fufiction
H(D) by the actionTf of an operatorT : H(D) — H(D) on f. But before this we
need some preliminary definitions, both of which were similarly statefblinsee also
[4]. By an operator orH (G) we mean a continuous (not necessarily linear) selfmapping
T : H(G) — H(G), whereG is a domain ofC.

Definition 2.1. Let G ¢ C be adomain and : H(G) — H(G) an operator. We say that
T is locally stable near the boundaif/for eachK € IC(G) there exists a compact subset
M € K(G) such that for each compact subget K2(G) with L ¢ G \ M, each function

f € H(G) and each positive number> 0, there exist a compact subdéte K,(G) with

L' C G\ K and a positive number > 0 such that

lg € H(G) and||f — gl < &1 implies|Tf — Tgl, <&

Definition 2.2. LetG ¢ CheadomainT : H(G) — H(G) an operator andl C H(G).
We say thal haslocally dense range atl near the boundarif there exists a compact subset
S € K(G), such that for eaclf € A, each compact subséte o(G) with L € G\ S
and each positive number> 0, there is a functio € H(G) suchthal|TF — f|; < e.

Of course, if the se#d is contained in the range of an operaloon H (G), thenT has
dense range afl. In particular, ifT has dense range (that is,.&t= H(G)) thenT has
locally dense range &f (G). Examples of these situations will be found later. We are now
ready to state an instrumental, abstract result (Theorem 2.1) that might be of independent
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interest. From it, our main result (Theorem 2.2) will be derived. For the sake of simplicity,
we delete the sentence “near the boundary” in the notions defined in the last two definitions.

Theorem 2.1. LetG C C be adomain andlA,}.c; and{Bg} s, be two families of subsets
of G satisfying the following properties:

(a) For everyo € I, the setA, is relatively compact in G.
(b) ForeveryK € K(G) there existt € I andL € K2(G) suchthatd, c L € G\ K.
(c) Foralla e Tandallf e J, Ay N By # D.

LetT : H(G) — H(G) be a continuous operator satisfying the next two properties:

(P) T is locally stable.
(Q) T has locally dense range at the constant functions.

Thenthe seM := {f € H(G) : Tf(Bp) = Cforall § € J}is residual inH (G).

Proof. Let(gx)x be an enumeration @d[i] such that each number@[:] occurs infinitely
many times in the sequence. Sifdg] is dense inC, the family{V; : k € N} is an open
basis for the topology of, whereV; := B(gx, 1/k). Due to (c), we can select a point
24p € Ay N By for every pair(o, f) € 1 x J. Then, trivially, Cy, := {z,5 : f € J} C Ay

(v e I)and{z,p : « € I} C By (P € J). Letus denote by, the point evaluation functional

0q: f € HG)— f(a) € C,

which is linear and continuous.
From the definition oM, we observe that > M1, where

My = ﬂ Sk

keN
and

Sei=J [ Geyo DMV (ke N).

ael fie]

The pointis the trivial inclusion (U D, D U [ Dyg, Which is true for any family
ﬁej ael oel ﬁe]

{Dyp: ael, peJ}ofsets.

Firstly, we will prove that eveny; is an open subset aff (G). For this, it is enough
to show that for a fixed: € I, the intersection) (52“/} o T)~1(V) is an open subset of

ped

H(G) for each open subsét c C. This, in turn, is fulfiled as soon as one proves the
equicontinuity of the familfo, o 7 : z € Co}(={0;,,0 T : B € J}) (see[17]). Indeed,
givene > 0 then, evidently|(d, o T)(f)| = |Tf(z)| < ¢ forall z € C, and all functions
f belonging to the 0-neighbourhodd := {f € H(G) : ITflg < e}; note thatU is
certainly a 0-neighbourhood becauBés continuous and, by (a), the sat, (so Cy) is
relatively compact ir3; this shows the equicontinuity ¢, : z € C,}. Thus, theS;'s
(k € N) are open and{1 is aG s-subset.
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Consequently, sincél (G) is a Baire space, it suffices to demonstrate that every fixed
Sk is dense inH (G). Fix a positive numben > 0, a functiong € H(G) and a compact
subsetk € K1(G). Because the familyD(g, K, n) : ¢ € H(G), K € K1(G) andy > 0}
(whereD(g, K,n) :={h € H(G) : |h — gllk < n}) is an open basis for the topology of
H(G), our goal is to see that

Then, fixk € N, g € H(G), K € K1(G) andn > 0, and letM be the compact subset
of G given by the local stability o when applied on the compact d€tDue to (b) and
the fact thatC,, ¢ A, (« € I) we can find an elemente I and a compact sét € K2(G)
forwhichC, c L ¢ G\ (M U S), whereS € K(G) is the compact set given by (Q). On
the other hand, since c G \ S, we can find for each € N a functionF; € H(G) such
that

ITFie — qillL < 1/2k. @

SinceL C G\ M, there exist from (P) a compact dete K2(G) with L’ G\ K and a
positive numbep; > 0 such that

[h € H(G) and| Fy — hll < &) implies||T Fx — Thll, < 1/2k. 3)

By construction.'NK = @, so we may choose open subsets 0, of Gwith 01N 0, =
@, K C O1andL’ C O,. Consider the setf := L' U K € K1(G) (this fact is crucial,
and it is true becausk € K1(G) andL’ € K2(G)) andO := 01 U O3, and the function
F : O — C defined as

_ ) g if ze€ 0y,
F2):= { Fi(z) if z€ 0.

Itis clear thatF € H(0) and thatE C O. Consequently, Runge’s approximation theorem
[16, Chapter 13] guarantees the existence of a rational funktigrnwith poles outsidés
(soh € H(G))suchthat| F —h| g < min{n, ;}. In particular, we obtaifig — k| ¢ < || F —
hlg <n,sohe D(g, K, n).

Onthe other hand,Fy — k| <||F —hl|lg < dr; whence, by (3), we geftT Fry —Th|; <
1/2k, and by (2) and the triangle inequality one obtdifi% — g, ||, < 1/k. Butthisimplies

|Th(zsp) — gkl < 1/kforall B € J because&, C L. Thereforeh € [ (5@[3 o T) " L(Vp),
ped
soh € S;. Consequentlys € D(g, K, ¢) NS, and (1) is satisfied. [J

As a consequence of this theorem, we get our desired result about radial cluster sets via
operators. Of course, the identity operalfrsatisfies (P) and (Q), so the next statement
applies tad, so solving the original problem proposed in the Introduction.

Theorem 2.2. Let T be a continuous operator @gh(D) satisfying propertiefP)and(Q) of
Theoren®.1.Then there exists a residual set of functighs H (D) such thaiCy(Tf, t) =
Cforallt €T.
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Proof. Firstly, we define

(1-2)r if 30)=0,

Ay = { (1_ ﬁ), if 3(1) <0,

where3(z) denotes the imaginary part of every C.

Choose now :=N,J :=T,G =D, A, :={ay : t € T} (n € N)andB; := {a,; :
n € N} (r € T). Then it is easy to see that the familigs, },cn and{B;},eT satisfy the
hypothesis of Theorerd.1. Hence the set

M:={feHD): {Tf(an;): neN}=Cforallr e T}

is residual inH (D). Sincea,;; — t (j — oo) forall+ € T and all subsequences
(nj)j>1 C N, the residuality oM implies the residuality of the greater 4gt € H(D) :
Co(Tf,ty=Cforallr e T}. O

In view of this result, from now on we will use the next definition.

Definition 2.3. Let T be a continuous operator dii(D)). We say thafl has themaximal
radial cluster set propertyMRCS-property) if the set

My(T) :={f € HD) : Co(Tf,t)=Cforalls e T}

is residual inH (D).

In terms of this new notation, we have shown that an operatoH¢b) satisfying
conditions (P) and (Q) has the MRCS-property.

Remark 2.3. In Theorem 2.2 we can replace radii by the family of all rotatitsi®) : 0 ¢

[0, 2xt]} of any fixed curvey in D ending at 1 and we still have the same chaotic boundary
behavior under the action of an operaf@atisfying (P) and (Q). In fact, Theorem 2.1 allows
us to derive a version of Theorem 2.2 for Jordan domains. Namélisifa Jordan domain
then there exists a family of curvegé}feﬁwg—with 7¢ ending at for each¢ € 00 Q—
with the property that ifl is a continuous operator ot (Q2) satisfying (P) and (Q), then
there exists a residual set of functiofiss H(Q2) such thaC5.(T f) = Cforall ¢ € 0.
Indeed, the Osgood—Caratheodory theorem [E&p provides a homeomorphisgfrom

D onto theC-closure ofQQ whose restriction oD is a holomorphic isomorphism from
D onto Q. Then definey; for eaché € 0,cQ asy:(u) = @ 1(Eu) 0<u < 1).
The conclusion follows by applying Theorem 2.1ta= N, J := T, G := Q, A, =
o{an}iet) (n € N) and B, := @({ant}nen) (¢ € T), in a similar way as in the proof of
Theorem 2.2.

Let us give a first example of operators under whose action this behavior is induced.
If O(z) = Zk>o¢k2k is an entire function of subexponential type, that is, for all num-
berse > 0 there is a constamt = A(g) > 0 such thai®(z)| < Aefl?l, or equivalently,
limy 00 (k!¢ NY* = 0, then®(D) := Y, -, ¢, D* defines a linear continuous operator
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on H(D) (actually onH (G) with G any domain inC) called an infinite order differential
operator, wher® denotes the differential operator ahd := the identity operator. Using
Cauchy’s estimates, it is easy to check thabitz 0 then®(D) is locally stable (in fact,

we can takeVl = K in Definition2.1 andL’ may be a compact set slightly greater than

and obviously its range contains the constant functions. Hence with the help of Theorem
2.2 we get the following result.

Theorem 2.4. Every non-zero infinite order differential operatd(D) on H (D) induced
by an entire functiord of subexponential type has the MRCS-property.

In particular, if for eachy > 0 we takeD(z) := z/ then we get that the differential operator
of orderj > 0 (the identity operator iff = 0) has this property and, since a countable
intersection of residual sets is again residual, we obtain the next corollary , which generalizes
the result of Tenthoff18] stated in the first section.

Corollary 2.5. The set{f € H(D) : Co(fV),1) = Cforall j>0andallz € T}is
residual inH (D).

Remark 2.6. Due to Fatou’s theorem on radial limits (sg®]) we cannot expect to get
functions in the Hardy spad&? with maximal radial cluster set at any boundary point.

Observe that the antiderivative operator of orgler N ata € D, namelyD, J f :=the
unique functiorg € H(D) such thatD/g = f andD*g(a) = 0 (0<k < j), is not locally
stable, so we cannot apply Theorem 2.2. Hence, we propose the next problem:

Is the set{ f € H(D) : Co(fV, 1) = Cforallj € Zandallz € T} residual in
H(D)?

Of course, the problem may be formulated more generally by replacing the antiderivatives
by an integral operatdF given byTf (z) = [ ¢(z,1) f (1) dt (f € H(D), z € D), where
¢ satisfies adequate conditions.

3. Further examples

Itis interesting to construct operators with the MRCS-property from others which enjoy
this property. In the case of algebraic operations made on an op&rafitn the MRCS-
property, we should “control” the boundary radial behavior of the “perturbing” operator. We
joint together in the next theorem the main three operations: sum, product and composition.
A nice result on large linear submanifolds is established in the last part of the assertion.

Theorem 3.1.(a) Let 7, S : H(D) — H(D) be operators such that T has the MRCS-
property.We have:

(i) Ifforeveryf € H(D) and everyr € T there existslirq_(Sf)(rt) € C,thenT + §
has the MRCS-property.
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(i) If for every f € H(D) and everyr € T there existslirqf(Sf)(rt) e C\ {0}, then

T - S has the MRCS-property.
(i) If Sislinear and onto thef o S has the MRCS-property.

(b) Every onto linear operator S has the MRCS-propektypreover,there is a dense
linear submanifold C H (D) such thatM \ {0} C M, (S).

Proof. (a) Parts (i) and (ii) are very easy, so their proof is omitted. As for (iii), we need to
show thatM, (T o S) is residual. For this, note thatt,(T o §) = S*l(MQ(T)). Since
M, (T) is residual, there are countably many dense open subisets H(D) (n € N)

o0
with M, (T) D (| W,. From the continuity oBit follows that each ses~L(W,) is open.
n=1

o0
We have thatM, (T o S) D ) S~L(w,), so it is enough to prove that each sett(W,,)

is dense. This is true becaﬁsé the image uBddran open subset is again an open subset,
which in turn follows from the open mapping theorem (EE4) sinceSis linear and onto
andH (D) is anF-space.

(b) ThatShas the MRCS-property follows from (iii) just by takirfg= Id. As a conse-
guence of [6, Theorem 2.1] (see Section 1), there is a dense linear mavfifatd H (D)
with M1\ {0} C M, (Id). ThereforeM \ {0} C M,(S), whereM := S~1(My), because
M,(S) = S‘l(/\/lg(ld)). SinceSis linear,M is a linear submanifold off (D). Finally, M
is dense becaug¥; is dense an&is an open mapping. ]

We next consider the multiplication operator
Ml/,:feH([ED)r—> V- fe HD),

wherey € H(D). The setZ(y) of zeros ofyy plays an important role in determining
whetherM,, has the MRCS-property.

Theorem 3.2.1f € H(D) and Z(y) is finite then the operatoM,, has the MRCS-
property.

Proof. Sincey is continuous we have that it is bounded on any compact subdBt of
from which one easily derives that,, is locally stable. According to Theoreth?, it is
suffices to show tha¥f,, has locally dense range at the constants. In order to see this, let
us setS := Z(iy)—which is finite, so compact—and take a constart C together with a
compact seL. € K(D) with L ¢ D\ S, and a numbes > 0. By Runge’s theorem, there

is a polynomiaF (so F € H (D)) such that

,~

e forallz € L.

<

‘F(z)—

max
x|

But this implies|| My, F — o] < &, which tells us thaM,, has locally dense range at the
constants. [
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Observe that i (1) is not finite thenVf, cannot have locally dense range at the constants
(takeL = {a}witha € Z())\ S, whereSis as in Definitior2.1). Therefore, itis not possible
to apply Theorem 2.2. But this does not imply tié&j, does not have the MRCS-property,
as one can see from the next example.

Example 3.1. There is a functiony € H(D) with infinitely many zeros inD such that
there exists

L(O) = lim Y(re'’y e 0D forall 0 € [0, 27]. (4)

Then, trivially, M,(Id) = My(My), SO My(My,) is residual and¥,, has the MRCS-
property. According to Frostmd1] (see also [1, Theorem 1]),6f € [0, 27] and(ax)k>1
is a sequence of distinct pointsin\ {0} such that

Zﬂ“’o’ (5)

= lel? — a
then the corresponding Blaschke product

Y(z) = O

k=1

— e D),
ar 1—axz (c )

which is in H (D) and has infinitely many zeros, has its radial lib{)) € ¢D. Therefore,
in order that (4) can be fulfilled, it is enough to find a sequancas before such that (5)
holds for allf e [0, 2x]. For this, choosey := 3(1+ ¢i/®) (k e N). This is a “good”
sequence if one takes into account that after a computation of two finite Taylor expansions
1-13(1—e")] [1—e|
t2/8 t
“worst” casef = 0. As for 0 # 0, the elementary geometrical inequaljf’ — %(1 +
PUSTES |sing| for all k >ko(0) € N (use that(1/2)(1 + ¢//**) tends to 1) solves the
problem.

it is seen that lim_, ¢ =1=Ilim,o

. The last approximation covers the

Note that the zeros @f in the last example have tangential approximation to the boundary.
Hence, the following natural question arises:

Is there any functiogy with infinitely many zeros on a prescribed radius such Mgt
has the MRCS-property?

Now we deal with composition and superposition operators. Given H (D, D) :=
{g € H(D) : g(D) c D} we define the (right) composition operatog as

Co: feHD)— fopeH(D).

Let us remember that an applicatign: X — X on a topological spacX is said to be
properwhen the preimage of every compact is also compact. With this definition we can
state suitably our result about composition operators.
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Theorem 3.3.If ¢ € H(D) is proper,thenC,, has the MRCS-property.

Proof. The result follows immediately from Theoreth2 because ifp is proper, then
itis easy to check that,, is locally stable, and itis obvious that all constants are in the range
of Cp. O

In particular, the rotation operat@y, : f(z) € H(D) — f(e!*z) € H(D)andingeneral
the composition operator generated by an automorphisih ledive the MRCS-property.

Finally, we consider the superposition (or left composition) operatoks.i¢fan entire
function, the superposition operatby, : H(D) — H(D) is defined as

L(/,(f)Z(/)Of.

Inthis case we only have to suppose th& non-constant to get a complete characterization,
which ends this paper.

Theorem 3.4. Let ¢ be an entire functioriThen the superposition operatay, generated
by ¢ has the MRCS-property if and onlygfis non-constant.

Proof. Using the little Picard theorem (sgk6]) it is easy to check thdt, has locally dense
range at the constants. Moreovky, is locally stable since itis continuous &i(D). Hence

by Theorem 2.2 the operatdr, has the MRCS-property. On the other hand, it is trivial
that if ¢ is constant then all cluster sets are constant. gadoes not have the MRCS-
property. [J

Note added in Proof

While this paper was in press, we realized that, after adequate reasonings, an affirmative
answer to the question posed in the Introduction can be derived from the results of Section 4
inthe paper by S. Kierst and E. Szpilrajn [Sur certains singularités des fonctions analytiques
uniformes, Fund. Math. 21 (1933) 267—294]. Nevertheless, our findings in the present paper,
which include the introduction of a large class of operafbrsurpass largely our first
objective, that was merely the caBe= Id.
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